_NASA CR-5784
., 7

N

WN ‘gdv) AUVHEIT HO3L

LOAM COPY: RETURK
 AFWL (WLIL-2)
KIRTLAND AFB, N MEX

MAGNETOHYDRODYNAMIC BOUNDARY LAYER BETWEEN PARALLEL
STREAMS OF DIFFERENT MAGNETIC FIELDS AND TEMPERATURES

By H. P. Paoand C. C. Chang
December 1964

Distribution of this report is provided in the interest
of information exchange. Responsibility for the con-
tents resides in the author or organization that pre-
pared it.

Prepared under Grant No. NsG-586 by
Department of Space Science and Applied Physics
THE CATHOLIC UNIVERSITY OF AMERICA
Washington, D.C.

ctlid,

for Lewis Research Center PQISaN S

/(;}‘X \()‘\) . -
/V \‘\”S ’ '9360 A %

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONS @™ & %
‘. T . ;7'\:*::@\"“ _f-~

For sale by the Clearinghouse for Federal Scientific and Technical Infofnatiog ~ = & 3
Springfield, Virginia 22151 ~ Price $0.60 \C;’;:‘-\ & S0

. N N4

R P



TECH LIBRARY KAFB, NM

- [N

DOLA5kL?

FOREWORD

The research described herein, which was conducted at the Catholic
University of America, was performed under NASA Research Grant NsG-586
with Mr. Robert G. Ragsdale, Nuclear Reactor Division, NASA-Lewis

Research Center, as Technical Manager.






MAGNETOHYDRODYNAMIC BOUNDARY LAYER BETWEEN PARALLEL
STREAMS OF DIFFERENT MAGNETIC FIELDS AND TEMPERATURES
by H. P. Pao and C. C. Chang

ABSTRACT

An analysis and calculations of the free laminar boundary layer flow between
parallel streams of different magnetic fields and temperatures were made for an in-
compressible, viscous, thermally and electrically conducting fluid. Small perturbation
and approximate sclutions were given, The approximate solution for OL= 1 gives
quite a satisfactory flow field which only involves a discrepancy of | per cent from
the exact numerical solution in most cases. The integration of the exact boundary layar
equations was carried out and some sample calculations were shown in the graphs.

The magneti: field thickens the flow boundary layer and thus provides a stabilizing
effect on the flow field. The possibility of an extension to the parallel streams of rwo

different fluids is also investigated,
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NOMENCLATURE

fluid velocity

magnetic field strength

(fo, ) C e/ 47cp)' %,

normalized magnetic field strength or Alfren wave
velocity

temperature

fluid pressure

2 + g2 )2 +p/p+ g*y, total pressure
gravitational acceleration

electrical field vector

(Uh/2»x )'/2 y , similarity variable
velocity stream function

magnetic potential function

dimensionless function associated with }0
dimensionless function associated with A

dimensionless function associated with T

uniform velocities at + &0 and - ee
uniform magnetic fieldsat + o0 and ~ oo
uniform temperatures at + 00 and - oo

To" Tz



A S € = o -

]|

¥ 2 v sl o

‘U, - Uz
H, - Ha
H, / U
Ha/ Ui
U/ Uy
v/ U

[Ot./( , -{8.)] /2
CRT D

U-u

H, - f

T+ f

T - f

velocity stream function of T
magnetic potential function of ?
dimensionless function associated with
dimensionless function associated with
m+n

m-n

fluid density

fluid viscosity

M /P, kinematic viscosity
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Subscripts

1,2

ele.cfrical conductivity

magnetic permeability

| /(4npeeor), magnetic diffusivity
heat conductivity

specific heat at constant pressure
k/(p ), thermal diffusivity

¥/ x , Prandile number

U,z/{ CP(AT)o} , Eckert number
))/77 , magneiic Prandil n.mber
average temperature gradient

vertical length scale of the boundury Tayrr thitkec s

U,z/j*/ﬁ*(AT), L , interral Froude nombey

upper and lower «ieams



I. INTRODUCTION

The theoretical and experimental studies related to the problem of flow between two
parallel streams of same or different densities have had renewed interest in the past decades.
The purpose of the present investigation is to study the interaction between parallel streams
and magnetic fields. In general, when a magnetic field is present, its effect upon an
electrically condu cting fluid has been known to be of a stabilizing nature. .If is, therefore,
to be expected that a magnetic field in the present case will have a stabilizing effect upon
the fluid motion, and this is evidently the case.

Lessen  discussed the stability of the free laminar boundary layer between two
uniform streams of fluids of same density and obtained the velocity distribution in the
course of his investigation. He reached the conclusion that the flow is unstable even
for very small Reynolds numbers. Lock 2,3 extended the work of Lessen by considering
parallel streams of different densities. Lin  has considered the stability of two parallel
steams for a compressible fluid. Stuart > has investigated the stability of pressure flow
between parallel planes under a parallel magnetic field, and Lock é has considered the
stability of this type of flow under a transverse magnetic field. They found that the
magnetic field always has a stabilizing effect on the fluid motion,

In the present investigation, the velocity, magnetic and temperature fields are
obtained. It is found that the magnetic field thickens the boundary layer, thus,
indicating its stabilizing effect upon the highly unstable flow. It is hoped that a sub-
sequent paper will present an analysis and detailed calculations on the stability of this

type of flow,



2. FUNDAMENTAL EQUATIONS

For an incompressible, viscous, electrically conducting fluid, in steady two

dimensional motion, the governing equations are:

“%"*"%“gf 9% Lo (S ). (1)
w20 (27, 0% (T T, @
%‘-+—aa—;,’—= 0, (3)

g—f + %; = 0, (4)

sy (49 - Vf)*’](a’r 5—;—;)=o, ()
g -vf) +n( L+ Z)- 0. ®

In the derivation of (1) - (6), it is assumed that the net charge density is zero, and

that ¥ , g and _Me are constant,

With use of (4), Eq. (5) and (6) become

) ?)

i
o

ax [Uj ~vf + 77( )J

%(udq_vf+7(§;,—(—g—x"')]=o. @)



It follows that

2V

ug = v{ + 7(%- =x ) = constant, (9*
It can readily be shown by Ohms law that Eq. (9) leads to
E, = constant,

where E, is the z~component of the electrical field. If we impose the
condition that the electrical field vanishes at infinity, it then vanishes everywhere. Eq. (9)

now becomes
) oF DL
ui—L./-f-?](W-a—x = 0 . (10)
In this investigation we will restrict our consideration to zero electrical field,

Equations (3) and (4) can be integrated by introducing two scalar functions }b (x,y)

and  Alx,y), such that

_2 ¥
YA V=X (an
N oN
d Tty g~k - (12)

* In a source free and steady state flow, the electric field obeys VxE=0 and - £=0.

If we impose the condition that the electrical field be constant at mlety, it follows then,
from the potential theory, that E  is constant everywhere in the region. Thus from
Ohms law, Eq. (9) follows immediately .



On cross~differentiating (1) and (2) to eliminate the total pressure terms, and then

introducing the stream and magnetic functions, we obtain

’)0, ( Yexx + Yyyx) ~ Y% ( Yy + V'.YYJ)

= Ay(Axxx+ Ayyx) = Ax (Dury+ Byr)) 1V (Bt 2 *xyyﬂlivyyy),(m

where the subscripts denote partial differentiations, Equation (10) becomes, after

infroducing stream and magnetic functions,

- \/Jy Ny + Yx/\] + 77(Axx+A¥¥) =0 . (14)

Now, with the boundary layer approximation,

2 2
2 2
L o< 15
553 < oy (15)

equations (13) and (14) take the forms

Y ¥yx— U Vyy = AyDivx - Ay + ¥V ¥y, (16)

- YA + YAy + NANyy = 0. (17)

Equation (I6) can be integrated once with respect to y which yields

By - hhy = Ayley =Ny + Wy + 500, (18)



where $(x) is an orbitrary function of x. Comparing this equation with
equation (1) we obtain

)
“a_f - S(x) ,

that is, the pressure gradient in x- direction is independent of y. Therefore,

we can evaluate 2P/dX at y =+ oo .

From the physical flow and magnetic field configuration (Fig. 1), the boundary

conditions are:
y —» ©o° : ;by-—-ul , Ay — H, (19)

y — — o0 : "/’y'—’UZ ’ A'y—’Hz- (20)

It follows that

s(x) =0 at y=+e, x>0, (21)

hence  s(x) is zero everywhere. Equation (18) now becomes
7,&, }ny - }Lx)by)' = A)'A")/ _AxA)'y + V¢yy_y . (22)

If we suppose now that the conditions of the problem introduce no other
parameters, we find, for example, that ¥ is a function of x,y, ¥ %] U,
Us, H, and Ha only, so that a dimensional argument 7 requires that

? be expressed as

2
W = (2wxU)m(E) E-(so) Yy, @
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where m is a function also of the parameters

14 Uz H
& ==, A== = _Ha
7 o A=y =g - @
The same dimensional argument leads to
1/2
A = (2VxUr) n(E) . (25)

By differentiation, the velocity and magnetic field components are obtained

u = yYym , v

1l

Va
(EVT((J‘) (gm/—M) J)

VUI Y2
(ZX (gn/”' n) 2

-[ = U/ 7’-1 / ;'
where the prime indicates differentiation with respect to 5 .

Substitution of (23) and (25) into (22) and (17) leads to the ordinary

differential equations

m' +mm’ — an" = 0, (26)

n'+ X(mn/-nm' ) = 0. (27)
The boundary conditions are:

g — 0o m — ]/ , 7‘!./—" 1
/8 (28)
g —_— — 0o m'—* A, n,—‘*ﬁz .
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A fifth condition is arbitrary up to a translation along the _§ - axis.

Energy Equation

When the two streams are also of different temperatures, the boundary layer

energy equation should be added which assumes the form

T - T Y : 29
u == (29)
+v 2o a)' =-X S 2yt c, ay R _

in which the Joule heat is absent because the electric field is zero everywhere, We
assume the temperature difference is so small that the constants of fluid properties
remain uniform. We also assume that the internal Froude number Fj or the

Richardson number  is large, so that the bouyancy force of gravity is small in

comparison with the inertia force, where

2

Foa_ Ul
Pt ﬁ*(ar).L
Thus, the flow field is essentially unaffected by the temperature field for the above

assumption. If we define

T - Ta= Car), 60(F), (30)

equation (29) becomes
8"+ Y(mo'+ 6m”2)= o, K1)

where
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are known as the Prandtl, and Eckert numbers.

The boundary conditions for the temperature field are
§ — oo : e — | ,

(32)
5—v—oo : & — O

3. SOLUTION BY THE METHOD OF SMALL PERTURBATIONS

In some practical cases, the differences in both the velocity and the magnetic
field between streams are small. It is advisable to find some approximate sofution for this

special case first.

Equations (26) and (27) in the last section correspond to the following boundary

layer equations:

u?-"iur-?i'- gé+ng +Vaa;z ’ (33)
udq_u'{-,.)]%-o. ' (34)

" Now, we define

u= (J-u and -f-H,—f, (35)

with u << U and 1?<< H, . Substituting Eq. (35) into Egs. (33) and

(34), and neglecting terms of order u /,and -F—/H,_ compared with unity, we have

+F 'f‘alau = 0, (36)

&, af
—,B:V+O—L’—§=o, 37)
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where 0=2/U, . Differentiating Eq. (37) with réspect to y and using Egs. (3)

and (4), we obtain

3z _of oy df _

¥ 3 X o ay? - (38)

o .

Adding and subtracting (36) and (38), and assuming the magnetic Prandtl's number

0 to be unity, we have

|

2G 26 "
ox - ){ ay2 '’ (39)
2w 2 2'w .

S = Ys >y (40)

where

G=a+f > W=E'~7?_ ’
2= oL, 2 a'
O AL

magnetic field distribution at the beginning of the

The velocity and

mixing zone is

x =o0: =09 y>o (41)

:f—=H, Y <Ko

where

U=U'—UZ/ /'7=H/‘H2

The solutions of Egs. (39) and (40) with the boundary conditions (41) are

G’-#[I—¢(t1)] ) (42)

U-H
W=z

[1- pct) , (43)
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where

s tie e (52)%,

Z 2
Pt) = ﬁ/ e 4y . (44)
o .

It follows that

“zl1-F(R¥)] - LT (4-4), ()

(¢~ %), ()

Tl il
Tl cifx

= F1-F (¢t @) -+ &

where

b= Pt), ¢=-P(2s) .

The plot of ($+4) and (§-¢) for {3, = /2 isshown in Fig, 2.

We now note that solutions (45) and (46) break down at ﬂ, = 1. The reason

is quite obvious, since the effect of transport of vorticity is essentially annulled by the

electromagnetic force, as ,B,-'l. As a consequence, the vorticity can be diffused

farther out, and in this way, the boundary layer is thickened. The boundary layer

continues to thicken with increase in P, until the critical value P, =1, at which

point the inertial force is essentially annulled by the electromagnetic force. Asa

result, the boundary layer approximations no longer hold true for 1 —IB’ <« /.
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When 15, >1, 772 becomes negative, the whole formulation of the
problem then breaks down. From a physical point of view, when B,>/, the
Alfvén speed H, is greater than the fluid speed U, ; the disturbances can, then,
propagate upstream. Thus, no steady state motion is possible. The above solution is,
therefore, limited to the range p, < I with (]—IB,) not small. ;h:ziilc general feature
of the qlignéd field in the hydromagnetic boundary layer flow. Y

The energy equation (29), with the small perturbation approximation, becomes

oT X oT (47)
2x U 2y?

in which we have also neglected the dissipation heat, Equation (47) gives, with the

boundary condition (32)

[ 1+ ¢{y/2(xxsu)?}]
(1 (48)

2N

A
F]

A1
Z

4. APPROXIMATE SOLUTION FOROo= 1

As in Section 3, we define
’ ‘)['—" Hl - 7? ’

— —_ . . .
where U4 and § are not necessarily small here in comparison to U, and H, .

U = U,—L_i

From Egs. (3) and (4) we have

T oy =~  2A __2A
=3y Vv ="%x f="3y ° T

The same dimensional argument, as in Section 2, leads to

,72

(2vxu)” m(g) )

G (2vr0) " 5 (5)

>l
]
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By differentiation, we have

/

R ‘ p — iV, __, | .
Z-Um'(¢), v=U(%) (7E-=), (49)
\;— _;I ‘:. —_ v
F=0%(8),  g-02) (75 -%). (50)
The boundary layer equations (26) and (27) become
"+ ﬁi'(S--”_’-‘)"’i”(/B'E'Si)'o’ 61N
Ao+ A(E - sm) - mI(fiE-sA) =0, (52)

where s = /U= 1-A It is easily seen that Eqs. (51) and (52) reduce to the equations

for small perturbation approximation if $<<¢ 1 and sr<<pf, where r = ﬁ/L-/-

The boundary conditions in the present case are

g—’ G0 7—'_'-’—’0: 7‘[/—'0)
;—o—oo: ﬁ,—Pl, T’l’—"'_ (53)
Adding and subtracting (51) and (52), and assuming ©OC =1, we obtain
-— Y_II —
G+G[8(1-p)-sW]=~o0, (54)
TV W'ff( I+ /6') -3 GJ = 0, (55)

where G = ™ + 7 and W =m -%. Since a fifth boundary condition is
arbifrary up to a translation along fhes- axis, we require that

m/(0) =+ . (56)



Being suggested by the small perturbation solution, we now assume that
= !
n (0) -5 r. (57)

Integration gives _ :
'»'t'-';’-} +a@ gnd Rwfrg+b o E—o.
From the conditions (53) we also have
W =¢, 7 =4d as £— o,
and

m

5+ Cg, N = r3+d, as S_..-.._

In the actual case, a and b are very small and the constants ¢, d, , ¢, and dj

are positive. Therefore, we will approximate the terms involving 8 in Egs. {54) and

(55) by
sw=Lcr-m, (58)
sG =L (r+r). (59)
Eqgs. (54) and (55) then become
G"+ ,{,jg-”-oi (60)
W'+ LLE§W = 0, @

where
4,- ’-,6:‘ %("r) ’

L=/ +/6.-%(l+r) ]
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It follows immediately that

FL - s (B5),  WELI- 12}

Therefore, we obtain

Fl1-5(3+8)]-F(F-%), 62)

S NN

1i-L(F+8))-5F-%). ©3)

where 7?, = 95{ (-f-’)l/zf} and 9?2 = 4’{(’?)‘/25} . It can easily be shown

that the approximate energy equation is
8"+ Lg9' =0, Li=Y(I-%s). (64)

Integration of (64) gives

o=L11+8{&)%}). 65
The approximate solutions (62), (63) and (65) differ from the small perturbation solutions (45),
(46) and (48) only by the argument in the error function ¢ defined in (44). A comparison of
the approximate solutions with the exact boundary layer solutions is shown in Fig. 3. Eq. (62)
gives the values of u and f which is slmost indistinguishable from the exact solution in this particular
case. Small perturbation solutions are also shown in dotted lines. Fig. 4 shows that for X < //2,
the small perturbation solution has quite a discrepancy with the exact sofution while the
approximate solution involves much smaller errors. For instance, with A = [/3 the maximum
error for the approximate solution is only 1 per cent while that for the small perturbation solution is
4.5 per cent. Even when A= 0, the average error is about 2 per cent for the approximate

solution. It is noted that the approximate solution is very helpful in the numerical integration.
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5. THE INTEGRATION OF THE EXACT BOUNDARY LAYER EQUATIONS

5.1 Asymptotic Expansions

The governing equations (26), (27) and (31) have the property that, if
m(), n(g)and & (_§) are any solutions, then m, (@), n, (@) and (@) are also

solutions, provided that

w= a¥ + b ,
m(E)= am, (@), n(g)=an(w), O6(F)=a*a(w).

Restricted to the case 0¢= 1, it follows from Egs. (26) and (27) that

R-’”+ RS =0, (66)
R"= s" = Rs'-SR’, ©7)
in which we have written
R=m+nand = m-n.
Differentiating (67) and then subtracting this from (66) we obtain
S+ s5R=0. (68)

First, let us consider the asymptotic expansions when g is large and negative,
The boundary conditions require that
' ’
R — -7\»"‘/32 and 5—'3\—fz as _f""‘°'°-
There are two cases to be considered, X > Fz and A = 132 = 0

No steady state cases will correspond to A< F: , since, then,the Alfvén
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speed Hy- is greater than the fluid speed Uz at § —-oo.

In the first case, when X > /3:' we can assume thdf

R — (A+/33)(§+A),
S — (X- ) (E+A),

as & — -co. Egs. (66)and (68) then become approximately

R"+ R"(X-P2)(E+A) =0,

5”’1- J”(/\"‘/’z)(f +A) =0,
the solution of which may be written ‘

R’ = 2 c,(A—P;)exlp{- -‘;’-()L—/S;)(f +A)a} ,

s zar-plepf-z(xe B (S 4 AF}

so that

R'= /\.+/B; + 4¢ (—-)%:‘Ez)l/)er{{ - ("}‘5_—“,32),/1(5 "'/'\)}» ;
1/2 /2
s'x n-pas 40 (XY erf [ - (232) (54}

where * 2
er{l = / e-t dt ,
z

and

[ f 112
R =g em a0 (272 | ert{-(52) (5 1)) as

5 =0u-pa)(5ea) 4 a(238) [ e (-(258) (s m)) 4

Since it is known

! e_zz ! 3
e"{l -4 2- -‘z—— ( / - -é"zr + TF - ') »

69)

(70)

1)

(72)

(73)

(74)

—

77)

(78)

(79)
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integration of this expression leads to

= (M + P E+A)+ S5 (:— Fr -, (80)
S =X - p,)(§+A)+ (r T taEo). @

=_(_:é) (§+A) ' @82)

z,-_(*:/") (§+A). @

A second approximation can be obtained by sub.sfifuting {(-’U’ P:)(g +A)+

_z? 2
e /z,a} for R and {(A-‘a,)(5+,q)+ Ge 2, } for
S in Egs. (66) and (68). We get eventually, when § is large and negative,

-(zl"‘zl)

R~ zc.(x-,e,)e"'z- c.c.b{2(4\+ﬁz>} —2+ ey (84)

-(z' +2})

! r=F2) ¥ .
R = A+fa+ 46,( 2/32) er{z,— t'?f € Py + -0y (85)
-z
€ 3 15
R =(M+p)(§+A) + c_z_l,__(/ Y "'T‘ZT_ ) -
€. C b -(Zn "-Z;)
- L 3
{2(.X.+/91)}/1(I+b)z 22 + ; (86)
2 a2 —(22+23)
$'= 26 (}""Pi)e—k _aG {Zb(l £)) e 5 PN 87)
X+ 12 ¢ ¢ e'_(z,‘1n-z,')
s'= A-prt 4 (25 ) erf 2.~ Top z? o (88)
.2}
ae 3 15 - .
S-‘—‘(}"ﬂz)(g"'/q)*'_zf—(/-zz} * 4 z7 —”')_

-(z2+23)
aG b e
— D + « o o l 89
S R )

where

b= (X=p1)/(x+p).
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In the second case, if A = (32 = O, we can suppose that R (E) — -a
and  §(§)— - as & — -oo , where a is a constant. The reason that R and S
approach the same constant =-a, is quite obvious. Since, if we let pa= © first, Egs.
(86) and (89) yield the conclusion that R and S approach the same constant. Now
we let X\ — o , we should expect they approach the same constant at A= O

If we substitute ~a for Rand S in Egs. (66) and (68) and integrate three times, we

get
a

R(§) =~ -a + ae §’
S(§)= -a + b,

This suggests that we try the expansions

R(E) > —-a + a c‘§+ az e-zaf-l- a_,eja! + - - (90)

5(§)=¢—a +b,€a§+bzeza§+b3eja§ + °n

Substituting in Egs. (66) and (68), and equating to zero the coefficients of successive powers

of e‘g , we obtain the relations

Qy = 52 = - _.Z'ab'

_ ai(4b,+an)
/8 a
0a (42, +bi)
T ’

’

and in general all coefficients are functionsofa, @, andb, . Ifwelet w= 2§,

then we have
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Rl@)= R(EYa = ~ + A€ A% f %4, ©2)

5,(“’)- S(f)/a - "/ + B: cw'f‘ Bl e3w+ 8_’ c:’w"l' ERY (93)

with

Az - 52 - —AIBI/4 ’
As = - A:(48,+A,)/18,
Bs = - A:(4A,+8,)/18 ,

The corr: sponding asymptotic expansions for R(§) and S(§) when ¥ is
+ 0o, and when R'— ¢ +hi S— | - p: s car be obtained in a similar way, or
from (86) and (89) by using the fact that =R(~¥' and -5(~§) are also solutions of (66)

and (68). Putting A=1, B, = B;,and B, d,, da forA, ¢, , ¢ , theyare

R= (1+f)(k- B)-d'e ’(l- 71, '; - )+

d:dz b -(,7' +7t) ceey
{z(l+/5 )} (1+ b) s (94)
S (1-B)(§- 5)-“*7‘ (- 7:*+I;: - )t
d,d: b e (,7'1'”7:).,. Ceey
RO KTy 3 7/’ (95)

where

- (8)%(¢-5) ,
n- (L2 %(5-8) ,
b= (1-p/(1+p).
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Since m and n are related with R and $S in the following manner

m =4 (R+$) and n-zL(R-,s), .(96)

the asymptotic expansions for m and n are readily obtained from above equations.

5.2 Numerical Soltuion

We expand the solution in o Taylor seriesabout & = ©
m = a.+a,§+ algz“'ajg"""'l (97)
n = bo + b§ ""6:32"‘6.!5’*"" (8)
where all coefficients are functions of % , a , Q , by and b, .

The asymptotic solution reveals that the constants occuring in (86) and (89), or

(94) and (95), are three in number, namely A, ¢, €2 ,(a, a,, b, for the

case A= B2 =0) and B, d, ,d2 . Therefore, the total number of these arbitrary
constants is eleven., If we now seek fo join the asymptotic solution and the power series
solution at some intermediate positive and negative valuesof & ,say &, and - s,
inspection of the differential equations (26) and (27) reveals that continuity of m, n, and all
derivatives, at £, ond - § is insured by equatingm, m’ , m” , n, n’ .
This yields ten algebraic equations in eleven unknowns, a,,a,, @2,4., 6, 4,6, .8, d,9nd

da . Hence one constant is arbitrary. However, the boundary conditions and the

governing equations reveal that this arbitrariness is only up to a franslation along the § - axis,
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We can, therefore pre-assign a fixed value to one of these constants, say @,= 0 ,

or &,=(1 +X.)/2, which corresponds tom(o) =0 or m”(0) =(1 +\)/2,

Some sample numerical solutions are shown in Figs. (5) - 8). The asymptotic
values are reached quite rapidly, especially when 8, ﬁnd .Bz are small. In ﬁmosf
cases, the velocity and magnetic field ap;proach their asymptotic values. when.

|E] = 4 . The approximate solution in Section 4 gives a éood quide iﬁ the

numerical integration,

The numerical solutions in Figs. (5) - (8) correspond to A = 0., 0,333, 0.50,
and 0.80 respectively. As we can see that the thickness of flow boundary layer
increases as the strength of the magnetic field increases; that is, the magnetic
field has a diffusing effect on the flow field. This effect is much profound when

/3' or 'Bz is comparable to one, as shown in Figs. 6 and 7, Indeed, the approximate
and small perturbation solutions have also shown this effect and some discussion has
been given in these sections. [t will be interesting to note that the flow field becomes
more stable when the strength of the magnetic field increases, since then the boundary
layer is thickened and the velocity shear is reduced. A detailed study of the stability
of the megnetohydrodynamic flow between parallel streams will give some answer to
the question: how the flow between parallel streams caﬁ be stablized by a magnetic

field,
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6. TEMPERATURE FIELD

When the fluid motion is determined, the temperature field follows readily
from Eq. (31). Since the asymptotic expansion for m is known, the asymptotic

expansion for @  can similarly be obtained. The numerical solutions for the

temperature field are also shown in Figs. (5) - ( 8).
As a special case when the magnetic field strength is zero, Egs. (26) and (31)

become, with y=1

mll/ + mmll = 0 ; (99)

0" + mo’ = 0, (100,

where we have neglected the dissipation heat in the energy equation. The boundary

conditions are

(101)

If we define

1) -
9':{(0—?\.), (102)

it follows immediately that

5(E) = m/(E) . (103)
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whence

I ‘_ 4
6= (m-2x). (104)

In this case, the temperature field is related to the flow field through this

simple relation. A comparison between Eq. (104) and the exact  solution with
dissipation heat included, is shown in Fig. 9. As we can see that the dissipation heat
is important when A <1/2, On the other hand, the dissipation heat may be
neglected safely when A > 0.8, In Fig. 9. Eq. (104) is almost indistinguishable

from the exact solution for N =0,8.

7. PARALLEL STREAMS OF TWO FLUIDS

When the parallel streams are of two fluids so that the constants of
fluid properties are different in the two streams. If the mass diffusion is neglected,

there are, then, some additional conditions to be satisfied at the interface.

Since the problem is arbitrary up to a translation along the ; — axis and the
interface is one of the stream surfaces, we will take _g = 0 as the interface
and

m = 0O at 5 = O, (]05)

Other conditions at the interface are: the shearing stress, velocity, magnetic field

strength, temperature and heat flux must be continuous, which yields

D
Mo My, m[, - mz/ , f, ¥, ./2771.,” - ﬁ Vzlzmz” ,
§ o (106)

_ 4 7
n=n , n/=n, , 6,=6: , i,5’:=1292,.
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Egs. (105) and (106) together with the conditions at infinity

f—» o:;:m’——l, n,“lel; & — I,
(107)

§ —=-00: m—= A, =8, 6 —0,
provide adequate boundary conditions for the governing equations (26), (27) and (31).

Therefore, asymptotic expansions, Taylor series and numerical integration can be

carried out in a similar manner.

8. CONCLUSIONS

From a study of the interaction between the flow and magnetic fields, the

following conclusions may be drawn:
1. The thickness of the flow boundary layer increases as the strength of

magnetic field increases. In other words, the magnetic field has a diffusing

effect upon the flow field.

2. The thickening of the flow boundary layer reduces the velocity shear, thus, provides a

stabilizing effect upon fluid motion.

3. The approximate solution for the case of X= 1 gives a quite
satisfactory flow field, which only involves a discrepancy of T per cent from the

exact numerical solution in most cases.

4. The extension to the two fluids may be readily carried out in a similar

manner,
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Figure 1. Configuration of the flow, magnetic and temperaiure fields.
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Figure 3. Comparison of small perturbation solution, approximate solution and exact solution,
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Figure 5. Velocity,magnetic and temperature fields .
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Figure 6. Velocity, magnetic and temperature fields.,
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Figure 7. Velocity, magnetic and temperature fields .
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Figure 8. Velocity, magnetic and temperature fields.
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Figure 9. Comparison of Temperature field given by Eq. (104) and the exact solution,



